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Abstract. The infinite component limit of the Edward+Anderson spin-glass model is studied to 
cubic order in lhe order parameter Q, below its vansition lemperature. A penurbation expansion 
around the mean-tield solution is performed, and some terms in ihe expansion are calculated 
to second non-trivial order. It is found thaf the series presents infrared uR) divergences below 
certah dimension which increases with the order of the terms; however, these divergences cancel 
exaclly with ultraviolet u v i  divergences within the dimensional regularization scheme. In terms 
of this new evidence. the critical behaviour of,thiS model. and some ’strange’ results previously 
found are discussed. 

1. Introduction 

In this paper we study the low-temperature phase of the Edwards-Anderson (EA) m- 
component spin-glass model (Edwards and Anderson 1975) in the limit when the number of 
spin components m rends to infinity independently of the spatial dimensionality d. To this 
effect. we consider a truncated version of the Ginzburg-Landau-Wilson (GLW) free energy to 
cubic order O(Q’), where Q is the spin-glass parameter. This model, in this approximation, 
has already been studied by using different methods (Green era1 1982, Viana 1988 (to be 
refered to as Lv)), and some unusual results have been found, which seem to indicate that the 
critical upper and lower dimensionalities of the theory coincide. On one hand, a one-loop 
perturbation expansion in the low temperature region fails due to the appearance of infrared 
(IR) divergences for d 4 8 (LV); this is usually considered as an indication of d ~ d  = 8 as 
being the lower critical dimension of the theory, below which SG order is imposible due to 
fluctuations. On the other hand, by using the method of minimal substraction of E poles (’t 
Hooft and Veltman 1872); Green er al (1982) have found that the upper critical dimension, 
above which mean-field theory provides the exact solution, is given by dud = 8 . ~  This last 
result would imply a shift in the critical behaviour of this model in the large-m limit, since 
it has been reported that ducd = 6 (Green era1 1982) and dld = 4  (Bray and Moore 1979b) 
for the finite m (> I )  version of this model. 

The explanation given to the qualitative change of behaviour of the EA mcomponent 
SG model in the m -+ 00 limit is the following (Bray and Moore 1979a,b, Green er al 
1982). In ‘replica language’ this model contains the so-called ‘quadrupole fields’, which 
couple different spin components within the same replica (this will be shown later); for 
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any finite value of m, the quadrupole fields do not play a critical role in the theory, since 
their ‘mass’ is larger than that of others by a factor of the order of I/m.  However, for 
m --f 00 the mass related to the quadrupole fields becomes equal to the mass of other 
modes. As a consequence, in this limit the quadrupole fields go ‘soft’ and couple different 
vector components, thus changing the critical behaviour. 

The results previously mentioned, which seem to imply that the lower and upper critical 
dimensionalities of this model coincide in the m ir 03 limit, are very strange. Having 
a theory in which the lower and upper critical dimensions are the same (= d,) is not 
what we would expect physically. This would imply that if we slowly varied the space 
dimensionality from d c d, to d > dc, we would go abruptly-without an intermediate 
region-from a regime where fluctuations are so important that order cannot exist, to another 
regime where fluctuations are completely irrelevant, in such a way that mean-field theory 
predicts exact results. In order to gain some insight into this problem, in this paper we 
extend the calculation of LV to include some terms of the series expansion to next non- 
trivial order. Subsequently, we analyse the behaviour of the series to find out whether or 
not the critical dimensionalities coincide and are given by drcd = dued = 8. 

We consider it appropiate to study the large-m limit of this model by truncating the 
GLW free energy to cubic order. The reason is the following: the EA m-component spin 
glass model has also been studied, by including up to the Q4 terms in the GLW free energy 
(Pytte and Rudnick 1978). for finite m. Although quartic terms should be negligible close 
to the critical temperature, they play an important role in the finite-m case, since one of 
them destabilizes the theory by inducing a negative gap in one of the correlation functions. 
However, in the large m ir 03 limit, this instability is removed (Bray and Moore 1978). As 
a counterpart, the Q’ model presents marginally stable solutions which show up as gapless 
correlation functions within mean-field theory, for any value of m. 

2. The model 

We consider the m-component Edwards-Anderson spin-glass model, in the limit m ir 03 

independently of the spatial dimensionality d. In this model, spins are located at the 
sites of an hypercubic d-dimensional lattice, and each of them interacts with its z nearest 
neighbours via quenched random exchange coefficients (Ji j  1, whose values obey a Gaussian 
probability density P ( J i j ) .  In order to obtain the free energy F,  we need to calculate the 
average of I n Z ( J i j )  over the randomness in the exchange coefficients, Z [ J i j )  being the 
partition function for a particular realization of bonds (Jf , ) .  To this end, we make use of 
the replica method (Edwards and Anderson 1975). which consists of the use of the relation 
(InZ) = lim,,o[(Z”) - lJ/n, where Z” is the partition function for n identical copies, 
or replicas, of the original system; therefore, the quantity to be calculated is I imn+~(Z”)~ ,  
where ( ) J  indicates average over randomness in the exchange coefficients. 

The correctness of the use of the replica method in the study of spin glasses was 
highly debated in the past (Anderson 1983, Almeida and Thouless 1978). because of the 
‘unphysical’ results obtained at low temperatures, until Bray and Moore (1978) suggested 
that the existence of modes with a negative gap implied that the symmetry between replicas 
should be broken in order to represent the physics of the problem. It is now believed that, 
for any finite m, the value of the order parameter qafl relating two different replicas (or, ,B), 
should depend on the specific replicas involved, in a way similar to a hierarchical tree with 
ultrametric structure (Mkzard er a/ 1984). In this way, different possible evolutions of the 
system are reflected on the different values of the order parameters. Mathematically, this 
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corresponds to an intinite succesion of symmetry breaking between replicas as temperature 
is lowered, where 4up -+ q ( x )  becomes a continuous variable (Parisi 1979, 1980a.b.c). 
However, for infinite m the replica method is expected to give an exact result without the 
need to break symmetry, since the model recovers ergodicity in this limit. The former 
statement is supported by numerical evidence (Moms et al 1986). and by previous studies 
which show that the replica-symmetric method gives an exact solution in the m -+ 03 limit 
of the long-range vector model (Kosterlitz et al 1976, de Almeida et al 1978), together 
with the knowledge that instabilities of the Q4 EA sC model are removed in this large-m 
limit (Bray and Moore 1978). 

By following the approach used by Bray and Moore (1979a), we start with the usual 
model of a spin-glass Hamiltonian and consider the partition function of the system 
replicated n times, 

where S& is the fith Cartesian component of the spin located at the site i and belonging 
to the replica a and the trace has to be taken  over^ all spin configurations. After averaging 
over the exchange coefficients. we obtain 

where Kij = $ ( A / T ) ?  fori, j nearest neighbours and zero otherwise, A is the width of the 
Gaussian~bond distribution, and T is'the temperature. We now introduce a set of auxi l iq  
fields [Q$]  in order to decouple the lattice sites via a Hubbard Stratonovich transformation 
(Hubbard 1959) to obtain 

These fields act as order parameters of the theory and for convenience they can be separated 
into two parts, each having different physical meaning: 

Q$ -+ Q$(l - 6"') +S"[Q"S,, f T:,,]. (2) 

The non-diagonal part of Q;!, with a # p accounts for the interaction between different 
replicas 01, p ,  and therefore it represents the spin-glass order. On the other hand, the term 
within the squared parenthesis represents the interaction between spin components of the 
same replica (a), and its trace in the spin space xw[Q'@&,fl + Ti,] represents a 'hard' 
non-critical mode. The tields Q"" decouple from other fields and can be integrated out of 
the problem; as a consequence, the remaining part T:,, is a traceless tensor usually called 
'quadrupole field'. After introducing (2) into (I) ,  expanding the external exponent to third 
order in the spin-glass Q$ and quadrupole T;" tields, canying out the spin traces, re- 
exponentiating and taking the continuum limit, we obtain to lowest order in the derivatives 
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where the summations run over all free indices. In this expression T and w are positive 
functions and the restrictions Q;; = 0 and E,, T;; = 0 apply. We can appreciate from 
equation (3) that Q;:, and T,Y3, have a mass difference of order (l/m), which disappears as 
m + 00, thus changing the critical properties of the model in this limit. 

3. Mean-field theory 

The replica symmetric mean-field solution of this model, close to the critical temperature 
T,, is given by (LV): 

for r > 0 
for r < 0 r / [ u ( n  - 2)]6,,, 

Q$ =~ 

T,, = 0 for any r. 

Therefore r = 0 defines T,. If we expand the GLW free energy density around the mean-field 
solution in the low-temperature region, and make a Fourier transform of the fields into the 
momentum space 4, we can write 

/ d d x t - F ( Q ( x ) ,  T(x) l l  --f CI-~00(4)+F1(4)+3i(4)1 (4) 
v 

with 

where RP;(: and S;,, are fluctuations of the spin-glass and quadrupole fields, respectively, 
about the mean-field solution. There are 23 different propagators or correlation functions 
between pairs of fluctuations, these are given by: 
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where the empty parentheses ( ) represent the quantity to be calculated, 3 is the GLW free 
energy density given by equations (4x5). and the subindex 2 indicates that this correlation 
includes terms up to those included in F?. In order to obtain the value of these propagators. 
it is possible to calculate them exactly to quadratic order in R and S, and then to introduce 
the cubic contribution as a perturbation, which in principle can be calculated to any desired 
order. The (exact) calculation to quadratic order can be done in the following way: (1) 30 
is-used as the free energy functional and the three possible bare propagators are calculated; 

a # p; (2) IF0 - FI is used as the energy density functional in equation (6) and exp(&] 
is expanded. The resulting series is summed to all orders in terms of the bare propagators. 
In this way, a set of~23 Dyson-type equations-which has to be solved-is obtained. Details 
of this calculation have been given elsewhere (Viana 1985). 

these %e: ( R $ ( q ) R ; ! ( - - q h ~ ,  (~;,,(q)S;,,(-qNo and (S;p(q)S;J-q))~. with ,U # P. 

Figure 1. This figure shows the g a p h i d  notation for h e  lypid propagators. Here. upper 
and lower indices are the replica and component indices respectively, with U # f i  # y # 6 and 
p # 31: double lines indicate these are 'dressed' propagators. given exactly lo quadratic order. 

An example of the diagramatic representation of the correlation functions calculated to 
quadratic order is shown in figure 1. These are represented by a double line, the greek 
symbols located at the top of this line indicate the replica indices (a # p # y),'and 
the lower indices indicate the spin components (,U # U): finally, each side of the graph 
corresponds to each of the two fluctuations involved. The mathematical notation For these 
coffilation functions is given by: 
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Figure 2. Squeleton graphs for the first- and second-order terms in the penurbation expansion 
of (R$lOi)r .  to include the cubic contribution to 3. Each of the points at which three lines 
meet is proponional 10 IP. 

G7Z (R$(q)si,,(-q))f GI3 = (R$(q)R$(-q))I  

Gz3 = (RzC(q)R:i:Y(-q))i. 

The mathematical value of these propagators, or of simple combinations of them, can be 
found elsewhere (Lv. Viana 1985). However, it is important to point out that in the limit 
m + W. all 'dressed' pure propagators are massless, as any propagation in a direction 
within the subspace generated by the eigenvectors corresponding to massless modes, can 
be done at no energy cost. There are some simple combinations of propagators which have 
simple poles and appear naturally in the theory. Among them, we have the following exact 
expressions (valid for any value of m): 

I 
(q2 -& Irl) 

G8 = GI - 4G2 ?- 3G3.= 

I 

4 
G R = G I - Z & + G 3 = 7  

where we have defined G; = Gi + (m - 1)G;l. These modes are the infinite component 
analogues of the 'breathing' and 'replicon' modes for the finite-m case (Bray and Moore 
1979a.b). as they have the same mathematical expression. 

4. Perturbation theory 

According to equation (6). the shift in the order parameter (f@ introduced by the presence 
of the cubic term in 3, given by 3 2  (equationQc)), can be wntten as the sum of all connected 
diagrams of the type 

and calculated, in principle, to any desired order. Figure 2 shows the 'squeleton' (unlabeled) 
graphs for the first ( a )  and second (h) non-trivial orders in the series. In order to evaluate 
the contribution of these 'squeleton' graphs it is necesary to sum over all possible graphs 
that 'fit' into the structure indicated by the squeletons. that is, over all connected diagrams 
having the same number of (double) lines. each of them representing the correlation between 
two fluctuations involved. Each of the points at which any three lines meet is proportional 
to w and (npf 1)/2 gives the non-trivial order of the term, where n p  is the number of such 
points. 
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The first non-trivial order ( I  = 0) of the expression (7), known as one-loop 
approximation or tadpole graph (R$) t ,  has been calculated (LV), with the following result: 

+O(l/m). (8) 

In the infinite volume limit, it is permissible to replace the,sum in equation (8) by an integral 
in the &dimensional space C,  -+ Lddqd/(211)d. Thus, the first non-trivial perturbative 
 correction^ diverges for 'd < 8, which could be an indication that d.= 8 is the lower critical 
dimension of the theory. On the other hand, by analysing the behaviour of this model in 
the high-temperature phase, Green er U/ (1982) found to the same order in perturbation 
theory that the upper critical dimension of~the theory is eight. In order to study this bizarre 
behaviour, we went to higher order in the expansion given by equation (7). It could be 
expected that each time a diagram presents a tadpole segment, a term proporiional to q-8 
would appear. However, we evaluated two graphs of the next non-trivial order to see if 
there were additional divergences. We found the following results: to order O(I/m), the 
contribution of the first graph shown in figure 2(h) is given by 

which also diverges for ford < 8. However, if we consider the second graph on figure 2(h), 
we can see that this is given by 

+q4(121r1% - 241rl") fq'(l2lrj"r f 81rI4) + (321rI4r - 1281r15)]) (9h) 

whose value diverges for any dimension d 6 . 1 4 .  This result suggests to us that the 
dimensionality, below which the terms of the perturbation expansion diverge, grows  with 
the order of the terms. Therefore,~it is necessary to make a deeper analysis before attempting 
to draw any conclusion on the vdlue of the lower critical dimensionality. 

5. Discussion 

As we have just mentioned, in the macroscopic limit every summation can be replaced 
by an integration over 4. However, each integral is IR divergent~below certain dimension 
D I R ~  which can be identified with the lower critical dimension dlcd of the theory. It is 
thus necessary to introduce some regularization scheme in order to turn each IR-divergent 
integral into a well defined object. The divergencies are related to the fact that in the 
m -+ M limit. zero-mass loops appear in each diagram. In fact, the dimension for which 
the theory diverges rises with the order of the perturbation. 
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An approach well suited to handle this behaviour is the dimensional regularization 
scheme. Within this scheme, the IR divergence shows up as a pole when the space 
dimensionality is D[R (4 + 0); however, there also exists a pole arising from the ultraviolet 
(uv) divergence for a definite dimension Duv (q + 03). which is found to cancel exactly 
with the IR divergence. The dimensional regularization can be performed by introducing 
a cut-off parameter A which allows us to make an analytic continuation of the integral to 
arbitrary values of f),R and DUV. It tums out that by choosing DIR = DUV, the pole arising 
from the uv divergence cancels exactly with the pole corresponding to the IR divergence, so 
the integral is null-in the dimensional regularization sense-for any arbitrary dimension 
(see appendix). By following the same procedure at every order in perturbation theory, we 
find that all terms are nul l  in  the dimensional regularization sense. 

In general, the dimensionality Duv is not relevant in the discussion of critical 
phenomma: however, the fact that in this problem we can choose DIR = DUV, is related to 
the finding that there is no characteristic scale in this problem; this lack of a characteristic 
scale is also reflected in  the absence of correction terms to Q proportional to log(T - T,). 

The previous results, in the low-temperature region, can be interpreted in two different 
ways. First, they could be an indication that replicons destroy long-range order with 
no energy loss; this would mean that any small perturbation would change instantly the 
magnetization in large areas. Another interpretation, which we think is more adequate, is 
that the role of these infinite-range fluctuations would be constrained to transport information 
between replicas at no energy cost. This would mean, in turn, that in the m + M limit the 
free energy valleys in contiguration space are connected through zero-altitude passages, in 
agreement with the idea that in this limit the ergodicity of the system is restored. 

~ 

Appendix 

Consider the integral 

where the right-hand side is the expression in D-dimensional polar coordinates. The integral 
is UV divergent for D > 201 and IR divergent for D < 201. Let us split the integration into 
an UV part, 9’ > A’ and an infrared pan q2 < A’: 

The first integral is convergent for D = DIR > 2a, and the second one for D = DUV < 201. 
By performing the integrations for D ~ R  > 2a and DVV < 201, we get 

The two terms show poles for DUV = = 2a. However, this expression can be continued 
analytically to arbitrary values of I>[R and Duv, and the constraints D1R > Za and DUV < 2a 
can be removed. By identifying DUV = DlR. the integral vanishes (Mum 1987, Le Bellac 
1991). 
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